

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 6, Issue 3, March 2017

A Survey on Texture Based Weed Identification System for Precision Farming

Ms. J. Mohana Preethi¹, Mrs. Dr. M. Sujaritha¹

Dept of Computer Science and Engg, Sri Krishna College of Engineering and Technology, Coimbatore, India¹

Abstract: Weed control within crop fields is one of the main problems in organic farming. For centuries, different weed removal tools have been used to minimize weeds in the crop fields. The automation of weed detection and removal in the agricultural field is a vital task which greatly improves the cost effectiveness and efficiency of the weed removal processes. This paper compares four texture extraction and one feature selection method tailored for weed removal process. Nowadays several image processing techniques are used for the removal of weeds in crop field. Eventually it also discusses the performance of those texture extraction methods and feature selection methods concludes the challenges facing in the present day research of weed removal technique in image processing.

Keywords: chemical weeding, physical weeding, morphological operation, texture extraction, feature selection, classification.

I. INTRODUCTION

Indian economy. In order to achieve maximum yield, the both economic and environmental goals. best agricultural practices must be followed. One of the most important practice is weed management. Weeds adversely affect the sugarcane crop yield as they compete in acquiring plant nutrients and resources ^[1, 2]. They are also responsible for harbouring various crop pests and diseases. Weeds have very fast growth rates compared to crops, and if not treated and managed, they may dominate the field. Germination of sugarcane crop completes in 20-30 days. This initial germination lets us to identify the difference between the crops and weed.

The simplest weed control method is manual weed control. But the main disadvantage in this method is that the labour required for manual weeding is expensive, time consuming and difficult to organize [2]. Furthermore, several health issues involved with the manual labourers make manual weed control difficult to implement.

Advances in computational and detection capabilities have led to the implementation of automation of agricultural practices. With automation, the weed removal process is operated autonomously which reduces human intervention and optimizes the mechanical functionalities of the machine. Automated machines also offer the choice of weed removal^[3]. This include

i) Chemical weeding

ii) Mechanical weeding.

1.1 Chemical Weeding

Typically, herbicides are applied uniformly to a whole field with no regard to the spatial variability of the weeds in the field. However, if herbicides are to be applied variably based on weed density, the amount of herbicide being used can be significantly reduced. Also manual sampling of weed is both labour and cost prohibitive in the current scenario. Thus, site-specific weed management

Sugarcane crop production is a major contributor to the and integrated weed management are required to achieve

Fig1. Chemical Weeding

1.2 Mechanical weeding

Mechanical approaches use selective machines or add-on tools to perform weed control close to the crop, without damaging the crop. Manual weed control is highly accurate due to the human intelligence in identifying the weeds but it requires a lot of human labour for the mechanical effort. Mechanical weed removal using machines is fast and provides a lot of force but is highly inaccurate due to lack of intelligence. Automating the mechanical weeding process combines the advantages of manual and mechanical approaches. The proposed system has been developed to classify the sugarcane crop and common weed species in the sugarcane field and can be used to guide the chemical or mechanical weed control devices generally in any agriculture field. This paper is structured as follows. The summary of the related work of weed detection is elaborated in section II. This is followed

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

technique in section III.

Then the comparative analysis of four weed detection technique is provided in section IV. Section V concludes with suggesting the extension of proposed work.

Fig2. Mechanical Weeding

II. RELATED WORK

Various implements have been specially designed and manufactured to control weeds in the crop fields (e.g.Ascard & Bellinder, 1996; Bowman, 1997). During the last ten years, researches has successfully focused on harrowing, torsion and weeding with the compressed air. The possibilities for using these weeding machines vary according to crop type, crop growth stage and field- and weather conditions and depend on selectivity. This selectivity is based on differences between weed and crop plants. Weed management is the essential practice in any agricultural field. Weeds affect crop yields due to competition to acquire crops nutrients and resources (Slaughter et al., 2008; Weide et al., 2008). Weeds have very fast growth rates compared to crops, and if it not treated well, they may dominate the field. In sugarcane weeds have been estimated to cause 12 to 72 % reduction in cane yield depending upon the severity of infestation. Weeds infestation in sugarcane crop is entirely different and is a specific problem when compared with any other crop. This fact can be understood by specific reasons like establishment of weeds in crop as eradication of weeds from plant crop is not possible at affordable cost, wider row spacing (60-120 cm), slow initial growth (30 - 45 days to complete germination and another 60-75 days for developing full canopy cover), heavy fertilization and frequent irrigations and very little preparatory tillage in ratoon crop. All these factors are responsible for weed infestations which in turn offer a great competition for crop growth in terms of space and input. Major weed flora observed in sugarcane fields are: Sedges- Cyprus rotundus; Grasses-Cynodon dactylon, Sorghum helepense, Panicum spp, Dactylocternium aegyptium, and Broad leaves weeds - Chenapodium album, Convolvulus arvensis L., Amaranthus viridis L., Portulaca oleraceae L.,

by a detailed description of four texture extraction Commelina bengalensis L. Weeds flora in sugarcane field competes for the moisture and light also eliminates about 4 times N and P and 2.5 times of K as compared to crop during the first 50 days period. Weeds also harbor certain diseases and pests that attack sugarcane and thus lead to indirect loss. Poor growth of cane resulting from weed infestation also affects quality. Weeds that are presents along the same row cause more harmness than those present in the inter-row spaces during early crop growth sub-periods. Thus the starting 90-120 days period of crop growth is considered as most critical period of weed competition in agriculture. Therefore, the weed management practice adopted should ensure a weed-free field for the first 3-4 months period.

III. TEXTURE EXTRACTION

Image analysis involves investigations of the image data for a specific application. Normally, the raw data of a set of images is analyzed to gain discernment into what is happening with the images and how they can be used to extract desired information(images). In image processing and pattern recognition and feature extraction is an important step, which is one of the special forms of dimensionality reduction. When the input data is large to be processed and suspected to be redundant then data is transformed into a decreased set of feature representations. The process of transforming the input data into the set of features is called as a feature extraction. Features often contain information relative to color, shape, texture or context according to the input.

1. Second order Gray level matrix

The process to generate four symmetrical co-occurrence matrix considering a 4×4 image represented with four gray-toned values from 0 to 3. For the purpose we considered one neighboring pixel (d=1) along the four possible directions as {[0 1] for 00; [-1 1] for 450; [-1 0] for 900 and [-1 -1] for 1350]}.

Fig3. Co-occurrence matrix directions for extracting texture features

Each element of the GLCM is the number of times that two pixels with gray tone i and with j are neighbor in the distance d and direction θ . For 00 co-occurrence matrix, there are 2 occurrence of the pixel intensity value 1 and pixel intensity value 3 are adjacent to each other in the input. Also, the occurrences of pixel intensity value 3 and

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

times. Hence, these matrices are symmetric(identical) in nature and the co-occurring pairs obtained by choosing θ equal to 0° would be similar to those obtained by choosing θ equal to 180°. This concept may extend to 45°, 90° and 135° as well. With all these considerations, the GLCM matrix is calculated for each of the four possible angles which is shown below.

Fig4. GLCM construction based on a (a) test image along four possible directions (b) 00 (c) 450 (d) 900 and (e) 1350 with a distance d = 1. Here # represents the number of times.

2. Law's texture feature

Laws developed a texture-energy approach that measures the amount of variation within a fixed-size window. A set of twenty 5 x 5 convolution masks is used to compute texture energy images (TE). The masks are computed from the following vectors: L5 (Level) = [14641]; E5 (Edge) = [-1 -2 0 2 1]; S5 (Spot) = [-1 0 2 0 -1]; $W5(Wave) = [-1 \ 2 \ 0 \ -2 \ 1]; R5 (Ripple) = [1 \ -4 \ 6 \ -4 \ 1].$ These TE images are normalized pixel-by-pixel with the L5L5T image (and then L5L5T is removed) and they are averaged corresponding to symmetrical kernels (such as R5L5 and L5R5), and taking into account that 20 out of 24 kernels (after removing L5L5) are symmetric one to each other, 14 TR images were produced (R stands for 'Rotational invariance'). From each one of the 14 TR images, 5 first-order statistics (mean, standard deviation, range, skewness and kurtosis) were computed (i.e., 5 statistical features computed from 14 energy maps), giving in total 70 texture features.

3. Gabor's wavelet

In the research, the two dimensional (x and y) elementary Gabor wavelet function is used for weed and crop feature extraction ^[20] and was defined as:

$$h(x, y) = \exp\left[-\alpha^{2j} \frac{x^2 + y^2}{2}\right] \cdot \exp\left[j\pi\alpha^j \left(x\cos\theta + y\sin\theta\right)\right]$$

Where $\alpha = \frac{1}{\sqrt{2}}, \ j = 0, 1, 2..., \theta \in [0, 2\pi]$ (3)

pixel intensity value 1 are adjacent to each other is 2 The Gabor wavelet function is a two-dimensional Gaussian envelope with standard deviation α^{-j} modulated by a sinusoid with frequency $\frac{\alpha^{j}}{2}$ and

orientation θ . The different choices of frequency level j and orientation θ were used to construct a set of filters. As the frequency of the sinusoid changes, the window size changes. This filter bank was composed of spatial domain filters that are generated from the elementary Gabor wavelet function. At each frequency level in the filter bank, there was a couple of filters that corresponds to the real and imaginary parts of the complex sinusoidal in the Gabor wavelet function. The filter output at each frequency level was computed as:

$$V[j] = \sqrt{\chi_j^2 + \omega_j^2}$$

Where χ_j is the mean output of the real filter mask, and

 ω_i is the mean output of the imaginary filter mask, both

at frequency level j across multiple sample points. At every frequency level, the filter bank produced one texture feature. The filter banks are defined by the number and levels of frequencies and the filter dimension or said to be

as mask size. The filter orientation was fixed at 90° [20] Fourty sample images containing all nine weed species and sugarcane crop were randomly selected for an experiment to select these filter bank parameters.

Ten frequency levels from 0 to 9 and three mask sizes of 9 x 9 pixels, 13 x 13 pixels, and 17 x 17 pixels were investigated to measure the effect of frequency level and mask size on class separability.

4. Proposed Rotation-invariant Wavelet features

The wavelet features extracted from the proposed rotationinvariant texture extraction method are examined in this section for feature selection. Five levels of wavelet decomposition with db2 wavelet basis is performed on the input texture images and their energy features are calculated. The three sub matrices corresponding to the highest resolution were removed and not used for feature extraction. This is because for this real time data set, these sub matrices correspond to the noise (like sand, thick edges etc.) and are not valuable for classification. So, the features were calculated from 13 sub matrices.

IV. FEATURE SELECTION PROCESS

Feature selection: A systematic effort has been taken to analyse the performance of the traditional and advanced features. Euclidean classifier is utilized for evaluating these features individually. The features with more than 65per cent classification percentage would be considered as good features. Since single feature is used for classification in this experiment the classification performance would be less than 75 per cent. But this experiment helps to find the good features from each

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

texture extraction method for this weed/crop classification both economic and ecological conditions. In order to application.

Table 1 shows the Correct classification percentage (CCP) weed location is required. As manual surveying is a highly obtained by various texture features. The features with labour demanding job, automatic techniques using leaf-CCP more than 65per cent (G9, G10, G11, T6, T8, W6, texture feature extraction and a new real time W9, W12, and W13) are selected and given as input to the classification algorithm for determination of weeds have proposed Fuzzy Real Time Classifier (FRTC).

Table1. Correct classification percentage (CCP) obtained by different features that are extracted through different Texture Feature extraction methods

Gabor wavelet Orientation: 90* Name frequency Mask size G1 4 9x9 59.3 G2 5 9x9 59.4 G3 6 9x9 59.4 G3 6 9x9 59.4 G3 6 9x9 59.4 G4 7 9x9 63.9 G5 4 13x13 63 G7 6 13x13 64.1 G8 7 13x13 64.1 G8 7 13x13 64.1 G10 5 17x17 69.5 G11 6 17x17 64.7 RSSSTR 62.3 7 13x13 T4 SSSSTR 62.3 7 T5 WSSTR 61.7 7 8.4.2 T3 SSESTR 62.4 7 8.4.2 T3 SSESTR 62.3 7 8.4.3 T0 WSSTR 53.6	Features	Specifi	Specification		
G1 G2 S 9x9 59.3 G2 5 9x9 59.4 G3 6 9x9 63.9 G4 7 9x9 63.9 G5 4 13x13 62.3 G6 5 13x13 64.1 G8 7 13x13 64.1 G9 4 17x17 69.6 G10 5 17x17 69.6 G11 6 17x17 69.5 G11 6 17x17 69.5 G11 6 17x17 69.6 G12 7 17x17 69.6 G12 7 17x17 69.6 G12 7 RSSTR 61.7 TS SSSTR 61.7 7 SSSTR 54.2 7 3 TS SSSTR 54.2 7 TS SSSTR 54.2 7 TS SSSTR 57.3<	Gabor wavelet Orientation: 90°	Name	frequen	cy Mask size	
G1 4 9x9 59.3 99.4 59.3 99.4 59.3 99.4 59.3 99.4 63.2 64 7 99.9 58.2 63.3 64.7 99.9 58.2 63.4 63.3 62.3 63.4 63.3 62.3 63.4 63.3 62.3 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 71.1 71.2 71.1 71.2 71.2 71.2 71.2 <th71.3< th=""> <th71.3< th=""> <th71.3< th=""></th71.3<></th71.3<></th71.3<>			-		
G1 5 9x9 59.7 G2 5 9x9 59.7 G3 6 9x9 58.2 G4 7 9x9 63.3 G4 7 9x9 63.3 G5 4 13x13 62.3 G7 6 13x13 64.1 G8 7 13x13 64.1 G8 7 13x13 64.6 G10 5 17x17 69.6 G11 6 17x17 69.5 G12 7 17x17 69.5 G11 6 17x17 69.5 G12 7 17x17 69.5 G12 7 17x17 69.5 G12 7 SSSTR 61.7 SSSTR 61.7 RSSSTR 62.3 T4 SSSTR 54.3 71.0 WSSSTR S54.3 71.0 SSSTR 54.3 T10 SSLSTR </td <td></td> <td><u></u></td> <td></td> <td>00</td> <td>59.3</td>		<u></u>		00	59.3
G3 6 9x9 59.4 G3 6 9x9 58.2 G4 7 9x9 58.2 G5 4 13x13 62.3 G4 7 9x9 58.4 G4 7 13x13 64.1 G6 5 13x13 64.1 G8 7 13x13 68.9 G9 4 17x17 69.5 G11 6 17x17 64.7 1 R355TR 61.3 63.4 12 R35STR 61.7 61.7 14 S55TR 61.7 60.7 15 W5WSTR 60.7 7 13 W5S5TR 53.6 61.7 10 W5S5TR 53.4 73 110 S5LSTR 52.4 73 Gray level ro ro 73 Gray level Name Energy 62.4 11<		GI	1	9X9	59.7
G4 7 9x9 58.2 G5 4 13x13 63. G5 4 13x13 63. G7 6 13x13 64. G8 7 13x13 64. G8 7 13x13 64. G8 7 13x13 64. G9 4 17x17 69.6 G10 5 17x17 64.7 C9 4 17x17 64.7 T1 RSESTR 62.3 G11 6 17x17 64.7 T2 RSSSTR 62.3 T4 SSSSTR 62.3 T5 WSWSTR 60.7 T5 SSSTR 64.6 T5 SSSTR 64.6 T5 SSSTR 64.5 T6 ESESTR 69.6 T7 RSLSTR 54.3 T10 WSESTR 54.3 T11 SSLSTR 54.		62	2	9X9	59.4
G4 7 989 63.9 G5 4 13x13 62.3 G7 6 13x13 64.1 G8 7 13x13 64.1 G9 4 17x17 69.6 G10 5 17x17 69.5 G11 6 17x17 69.5 G11 6 17x17 64.7 Laws Texture First order statistics : mean First SSSTR 63.4 T3 SSESTR 63.4 63.4 T3 SSESTR 60.7 T4 SSSSTR 60.7 T5 WSWSTR 60.7 T6 ESESTR 69.6 T9 RSSTR 54.3 T0 WSESTR 57.3 T1 SSESTR 62.4 T2 RSWSTR 57.3 T6 ESESTR 54.3 T10 WSESTR 57.3 T13 WSESTR 57.3 T33		65	2	9X9	58.2
G5 4 15x15 623 G6 5 13x13 63 G7 6 13x13 63 G8 7 13x13 689 G9 4 17x17 69.5 G10 5 17x17 69.5 G11 6 17x17 64.7 G12 7 17x17 64.6 T2 RSSSTR 61.3 T3 SSESTR 62.3 T4 SSSTR 61.7 T5 WSWSTR 60.7 T6 ESESTR 53.6 T10 WSESTR 53.4 T33 <wsstr< td=""> 57.3 Gray Level Feature M2 Emergy 62.4 M3 Entropy</wsstr<>		G4	1	9X9	63.9
Go 5 15x15 63 G7 6 13x13 64.1 G8 7 13x13 64.1 G9 4 17x17 69.6 G10 5 17x17 69.5 G11 6 17x17 69.5 G12 7 17x17 64.6 G12 7 17x17 64.7 Name Energy Map 64.6 61.7 T2 R5S5TR 62.3 62.4 T3 S5E5TR 62.4 7 T5 W5WSTR 60.7 60.7 T6 E5E5TR 64.6 7 T9 R5FSTR 54.2 7 T0 W5E5TR 53.6 7 T11 S5LSTR 50.5 7 T33 W5S5TR 52.4 7 T10 W5E5TR 53.6 7 T11 S5LSTR 64.1 05.1 Matinum Probability		Go	4	13x13	62.3
G7 0 15X15 64.1 G8 7 13X13 68.9 G10 5 17x17 68.9 G10 5 17x17 69.5 G11 6 17x17 64.7 Laws Texture Name Energy Map 63.4 First order statistics :mean T1 RSESTR 63.4 T3 SSESTR 61.7 7 T4 SSSSTR 61.7 7 84.5 T4 SSSSTR 69.6 69.7 T5 W5W5TR 69.6 69.7 T6 ESESTR 69.6 7 T7 RSLSTR 54.3 73.8 T10 W5ESTR 54.3 73.8 T11 SSLSTR 57.3 73.3 Gray Ievel co occurrence M1 Maximum Probability 60.1 T12 RSW5TR 57.3 73.3 8 111 851.5TR 53.3		Go	2	13x13	63
G3 7 15X15 68.9 G10 5 17x17 69.5 G11 6 17x17 64.7 G12 7 17x17 64.7 G12 7 17x17 64.7 G12 7 17x17 64.7 G12 7 17x17 64.7 T2 RSSSTR 62.3 T4 SSSSTR 61.7 T5 WSWSTR 60.7 T6 ESESTR 69.6 T7 RSLSTR 64.2 T8 ESISTR 69.6 T9 RSRSTR 54.3 T10 WSESTR 57.3 T12 RSWSTR 56.5 T12 RSWSTR 57.3 Gray evel co occurrence M1 Maximum Probability 60.1 M2 Energy 62.4 M3 Entropy 64.3 M4 Contrast 64.1 <td></td> <td>G/</td> <td>0</td> <td>13x13</td> <td>64.1</td>		G/	0	13x13	64.1
G9 4 17x17 69.6 G10 5 17x17 69.5 G11 6 17x17 69.5 G12 7 17x17 64.6 T2 RSSTR 62.4 T3 SSESTR 62.4 T4 SSSSTR 62.4 T5 W5WSTR 60.7 T6 ESESTR 54.2 T8 ESLSTR 54.3 T10 WSESTR 52.4 T11 SSLSTR 50.3 T12 RSWSTR 52.4 T13 WSESTR 52.4 T14 WSLSTR 53.6 T11 SSLSTR 54.3 T10 WSLSTR 52.4 T14 WSLSTR 53.5 <tr< td=""><td></td><td>G8</td><td>1</td><td>15X13</td><td>68.9</td></tr<>		G8	1	15X13	68.9
G10 5 17.817 69.5 G11 6 17.817 64.7 Laws Texture Name Energy Map 64.6 First order statistics : mean T1 RSESTR 63.4 T2 RSSSTR 62.3 7 T3 SSESTR 62.3 64.6 T2 RSSSTR 62.3 T4 SSSSTR 62.3 T4 SSSSTR 60.7 T5 WSWSTR 69.6 T9 RSSTR 54.2 T8 ESLSTR 54.2 T8 ESLSTR 56.5 T10 WSESTR 53.6 T11 SSLSTR 54.3 T13 WSSSTR 52.4 T14 WSLSTR 57.3 Gray level co occurrence M11 Maximum Probability 60.1 M2 Energy 62.4 M3 Entropy 64.3 M4 Contrast<		G9	4	17x17	69.6
G11 6 17x17 64.7 Laws Texture Name Energy Map 64.6 First order statistics :mean TI RSESTR 63.4 T2 RSSSTR 63.4 63.4 T3 SSESTR 61.7 69.6 T4 SSSSTR 60.7 69.6 T5 WSWSTR 60.7 69.6 T7 RSLSTR 54.3 69.6 T7 RSLSTR 54.3 61.7 T0 WSESTR 54.3 65.5 T11 SSLSTR 57.3 73.3 T13 WSSSTR 57.3 64.1 M2 Energy 62.4 64.3 M11 SSLSTR 57.3 73.3 T13 WSSSTR 57.3 65.5 T12 RSWSTR 57.3 62.3 M2 Energy 62.4 64.1 M2 Energy 62.4 62.3 M3 Entropy 64.3		G10	2	17x17	69.5
GI2 7 17x17 64.6 First order statistics :mean TI R3ESTR 64.6 T2 RSSSTR 62.3 T3 SSESTR 61.7 T3 SSESTR 60.7 T6 ESESTR 62.4 T7 RSSSTR 60.7 T6 ESESTR 69.6 T9 RSTR 64.6 T9 RSTR 64.6 T0 WSWSTR 60.7 T6 ESESTR 64.3 T1 RSLSTR 54.2 T8 ESLSTR 54.3 T10 WSESTR 52.4 T11 SSLSTR 56.3 T11 SSLSTR 52.4 T14 WSESTR 52.4 <t< td=""><td></td><td>G11</td><td>6</td><td>17x17</td><td>64.7</td></t<>		G11	6	17 x 17	64.7
Laws Texture Name Energy Map First order statistics : mean T1 RSESTR 64.6 T2 RSSSTR 62.3 T4 SSSSTR 62.3 T4 SSSSTR 60.7 T5 WSWSTR 60.7 T6 ESESTR 69.6 T7 RSLSTR 54.2 T8 ESLSTR 69.6 T9 RSSTR 54.3 T10 WSESTR 56.5 T12 RSWSTR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 T13 WSSSTR 52.4 T14 WSLSTR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 matrix(GLCM) M2 Energy 62.3 M3 Inverse Difference Moment 61.6 M2 Urevel Feature 62.4 Wit <td< td=""><td></td><td>G12</td><td>7</td><td>17x17</td><td></td></td<>		G12	7	17x17	
First order statistics :mean TI RSESTR 63.4 T2 RSSSTR 61.7 T3 SSESTR 61.7 T5 WSWSTR 60.7 T6 ESESTR 69.6 T7 RSLSTR 64.4 T8 ESLSTR 69.6 T7 RSLSTR 64.2 T8 ESLSTR 69.6 T9 RSRSTR 54.3 T10 WSESTR 53.6 T11 SSLSTR 56.5 T12 RSWSTR 57.3 T13 WSSSTR 52.4 Matinum Probability 60.1 M14 WSLSTR 57.3 T13 WSSSTR 52.4 M3 Entropy 64.3 M4 Contrast 64.1 M5 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Inverse Difference Moment 62.4 M6 Cluster Prominence 58.6	Laws Texture	Name	Energy	Map	
T2 RSSTR 63.4 T3 SSESTR 62.3 T4 SSSSTR 61.7 T5 W5WSTR 60.7 T6 ESESTR 69.6 T7 RSLSTR 69.6 T9 RSFSTR 54.2 T8 ESLSTR 69.6 T9 RSFSTR 54.3 T10 WSESTR 53.6 T11 SSLSTR 56.3 T12 RSWSTR 57.3 T13 WSSSTR 57.3 T14 WSLSTR 57.3 T13 WSSSTR 52.4 T14 WSLSTR 56.3 T12 RSWSTR 56.4 T14 WSLSTR 57.3 T13 WSLSTR 57.3 T14 WSLSTR 56.4 M2 Energy 62.4 M3 Entropy 64.1 M5 Cluster Prominence 58.6 M6 Cluster Prominence	First order statistics :mean	T1	RSESTR		64.6
T3 SESTR 02.3 T4 SSSTR 61.7 T5 WSWSTR 60.7 T6 ESESTR 69.6 T7 RSLSTR 69.6 T7 RSLSTR 54.2 T8 ESLSTR 69.6 T9 RSRSTR 54.3 T10 WSESTR 53.6 T11 SSLSTR 54.3 T10 WSESTR 53.6 T11 SSLSTR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 matrix(GLCM) M2 Energy 62.4 M3 Entropy 64.3 M4 Contrast 64.1 M5 Cluster Shade 59.3 M6 Cluster Shade 59.3 M6 Correlation 62.4 Proposad wavelet features W1 2 Vertical detail With DB2 and energy measure W1 2 Verical det		T2	R5S5T	R	63.4
T4 SSSTR 61.7 T5 W3W5TR 60.7 T6 ESESTR 69.6 T7 RSL5TR 54.2 T8 ESL5TR 69.6 T7 RSL5TR 54.3 T9 RSR5TR 53.6 T11 SSL5TR 56.3 T12 RSW5TR 57.3 T13 WSSSTR 52.4 T14 WSL5TR 56.3 T13 WSSSTR 52.4 T4 WSL5TR 57.3 T13 WSSSTR 52.4 T4 WSL5TR 50.3 T13 WSSSTR 52.4 M2 Energy 62.4 M3 Entropy 64.3 M4 Contrast 64.1 M5 Cluster Shade 59.3 M6 Cluster Shade 59.3 M6 Contrast 64.1 M9 Correlation 62.4 W9 Diagonal detail <td></td> <td>T3</td> <td>S5E5T</td> <td>R</td> <td>62.3</td>		T3	S5E5T	R	62.3
TS WSWSTR 60.6 T6 ESESTR 69.6 T7 RSLSTR 69.6 T9 RSESTR 69.6 T9 RSESTR 69.6 T9 RSESTR 54.2 T8 ESLSTR 69.6 T9 RSESTR 53.6 T10 WSESTR 57.3 T11 SSLSTR 57.3 T12 RSWSTR 60.1 matrix(GLCM) Maximum Probability 60.1 M2 Entropy 64.3 M4 Contrast 64.3 M5 Cluster Prominence 58.6 M6 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Inverse Difference Moment 61.6 M9 2 Verical detail 63.3 W1 2 Diagonal detail 63.4 W4 3 Horizontal detail 63.3 <		T4	\$5\$5T	R	61.7
T6 ESESTR 69.6 T7 RSLSTR 54.2 T8 ESLSTR 69.6 T9 RSRSTR 54.3 T10 WSESTR 54.3 T11 SSLSTR 56.5 T12 RSWSTR 57.3 T13 WSSSTR 57.3 T14 WSLSTR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 M2 Energy 62.4 M3 Entropy 64.3 M4 Contrast 64.1 M5 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.4 M3 Inverse Difference Moment 61.6 M3 Level Feature W1 2 Vertical detail 63.3 W3 2 Diagonal detail 62.4 W4 3 Vertical detail 63.3 <td></td> <td>T5</td> <td>W5W5</td> <td>TR</td> <td>60.7</td>		T5	W5W5	TR	60.7
T7 RSL5TR 54.2 T8 ESL5TR 69.6 T9 RSR5TR 54.3 T10 WSESTR 56.5 T11 SSL5TR 57.3 T13 WSESTR 52.4 T14 SSL5TR 56.5 T12 RSW5TR 52.4 T13 WSSSTR 52.4 T14 WSLSTR 56.5 T13 WSSSTR 52.4 T14 WSLSTR 57.3 Gray level feature 62.4 M3 Entropy 62.4 M3 Entropy 64.1 M5 Cluster Prominence 58.6 M6 Cluster Prominence 58.6 M7 Homogeneity 62.3 M6 Cluster Prominence 58.6 M8 Inverse Difference Moment 61.6 M9 Correlation 62.4 W1 2 Horizontal detail 64.3 W4 3		T6	E5E5T	R	69.6
T8 ESLSTR 69.6 P T9 RSRSTR 54.3 T10 WSESTR 53.6 T11 SSLSTR 56.5 T12 RSWSTR 57.3 T13 WSSSTR 57.3 T14 WSLSTR 56.5 T12 RSWSTR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 matrix(GLCM) M2 Energy 62.4 M2 Energy 64.3 M4 Contrast 64.3 M5 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Inverse Difference Moment 61.6 M9 Correlation 62.4 Proposed wavelet features W1 2 Verical detail 63.3 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 63.4 W4 2 Verical detail 64.		T7	R5L5T	R	54.2
T9 RSR5TR 54.3 T10 54.3 WSE5TR 53.6 S6.5 T11 SSLSTR 56.5 T12 RSW5TR 57.3 T13 WSS5TR 57.3 T14 WSL5TR 57.3 Gray level co occurrence MI Maximum Probability 60.1 M2 Energy 62.4 M3 Entropy 62.4 M3 Entropy 64.3 64.1 64.1 M5 Cluster Shade 59.3 62.3 M6 Cluster Prominence 58.6 60.2 M7 Homogeneity 62.3 62.3 M8 Inverse Difference Moment 62.4 M8 Name Level Feature with DB2 and energy measure W1 2 Vertical detail 63.3 W3 2 Diagonal detail 62.4 W6 3 Uagonal detail 62.4 W6 3 Vertical detail 63.3 W5		T8	E5L5T	R	69.6
T10 WSESTR 53.6 T11 SSLSTR 56.5 T12 RSWSTR 57.3 T13 WSSSTR 52.4 T14 WSLSTR 57.3 Gray level co occurrence MI Maximum Probability 60.1 M2 Energy 62.4 M3 Entropy 64.1 M5 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.4 M8 Inverse Difference Moment 61.6 M9 Correlation 62.4 Proposed wavelet features W1 2 Horizontal detail 64.1 W1 2 Horizontal detail 64.3 64.4 M6 Cluster Prominence 58.6 6 M7 Homogeneity 62.3 61.6 W9 Z Vertical detail 64.7 W2 2 Vertical detail 64.3		T9	R5R5T	R	54.3
T11 SSLSTR 56.3 T12 R5W5TR 57.3 T13 WSSSTR 57.3 T14 WSSSTR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 M2 Energy 62.4 M3 Entropy 64.3 M4 Contrast 64.1 M5 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Inverse Difference Moment 61.6 M9 Correlation 62.4 Proposed wavelet features W1 2 Horizontal detail 63.3 W1 2 Vertical detail 63.3 W4 3 Boizontal detail 64.4 W6 3 Diagonal detail 64.7 W2 Vertical detail 63.3 W3 2 Diagonal detail 64.7 W2 Vertical detail 64.6 W4 3 Horizontal detail		T10	W5E53	IR.	53.6
T12 R5W5TR 57.3 T13 W5S5TR 52.4 T14 W5L5TR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 M2 Energy 62.4 3 64.3 64.4 M2 Entropy 64.3 64.1 M5 61.1 M5 Cluster Shade 59.3 62.3 62.4 M6 Cluster Prominence 58.6 61.1 62.3 M6 Cluster Prominence 62.4 62.4 M8 Inverse Difference Moment 62.4 M8 Inverse Difference Moment 62.4 M9 Correlation 62.4 Proposed wavelet features W1 2 Vertical detail 63.9 W1 2 Vertical detail 63.3 93 93 W3 2 Diagonal detail 62.4 94 94 94 W6 3 Vertical detail 63.3 94 94<		T11	S5L5T	R	56.5
T13 WSSSTR 52.4 T14 WSLSTR 57.3 Gray level co occurrence MI Maximum Probability 60.1 M2 Energy 62.4 MS Entropy 64.1 M4 Contrast 64.1 MS Cluster Shade 59.3 M6 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.4 MS Inverse Difference Moment 61.6 M9 Correlation 62.4 MS Inverse Difference Moment 61.6 M9 Correlation 62.4 MS Inverse Difference Moment 61.6 M9 Correlation 62.4 MS Inverse Difference Moment 61.6 W1 2 Horizontal detail 64.7 W2 Vertical detail 64.7 W2 2 Vertical detail 64.7 W2 Vertical detail 64.7 W2 2 Vertical detail 64.9 W3 <td></td> <td>T12</td> <td>R5W57</td> <td>TR.</td> <td>57.3</td>		T12	R5W57	TR.	57.3
T14 WSLSTR 57.3 Gray level co occurrence M1 Maximum Probability 60.1 matrix(GLCM) M2 Energy 64.3 64.3 M4 Contrast 64.3 64.3 M4 Contrast 64.3 M4 Contrast 64.3 M5 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 61.6 M9 Correlation 62.4 Proposed wavelet features W1 2 Vertical detail 63.3 W3 2 Diagonal detail 64.3 64.3 W4 3 Horizontal detail 63.4 64.4 W6 3 Diagonal detail 64.7 64.7 W2 2 Vertical detail 63.4 64.7 64.7 W1 2 Diagonal detail 64.3 64.7 64.7 64.3 W4 3 Horizontal detail 6		T13	W5\$51	R	52.4
Gray level co occurrence M1 Maximum Probability 60.1 matrix(GLCM) M2 Energy 62.4 M3 Entropy 64.3 M4 Contrast 64.1 M5 Entropy 62.4 M6 Cluster Shade 59.3 M6 Cluster Shade 59.3 M6 Cluster Shade 62.3 M7 Homogeneity 62.4 Proposed wavelet features Name Level W1 2 Vertical detail W2 2 Vertical detail W3 2 Diagonal detail W4 3 Horizontal detail W4 3 Horizontal detail W4 3 Horizontal detail W6 3 Diagonal detail W4 4 Diagonal detail W4 4 Diagonal detail W6 3 Diagonal detail W9 4 Diagonal detail W1 5 Vertical detail W1 5 Vertical detail W1 5 Vertical detail W1 5 Vertical detail W1 5 Diagonal		T14	W5L53	TR.	57.3
M2 Energy Entropy 62.4 (4.3) M3 Entropy 64.1 M4 Contrast 64.1 M5 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Inverse Difference Moment 61.6 M9 Correlation 62.4 Proposed wavelet features W1 2 Horizontal detail W1 2 National detail 64.7 W2 2 Vertical detail 63.9 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 62.4 W3 2 Diagonal detail 64.7 W4 3 Horizontal detail 62.4 W4 3 Horizontal detail 62.4 W4 3 Diagonal detail 62.4 W6 3 Diagon	Gray level co occurrence	MI	Maximum Probability		60.1
M3 Entropy 64.3 M4 Contrast 64.1 M5 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Inverse Difference Moment 61.6 M9 Correlation 62.4 Proposed wavelet features W1 2 Horizontal detail 63.3 W1 2 Vertical detail 63.3 03.3 W3 2 Diagonal detail 64.1 W4 3 Horizontal detail 63.3 W5 3 Vertical detail 63.3 W5 3 Vertical detail 64.6 W6 3 Diagonal detail 64.6 W6 3 Diagonal detail 64.7 W1 4 Horizontal detail 63.3 W5 3 Vertical detail 64.6 W8 4 Vertical detail 64.6 W8 4 Vertical detail	matrix(GLCM)	M2	Energy		62.4
M4 Contrast Cluster Shade 64.1 SO Cluster Shade 69.3 SO S M6 Cluster Prominence 58.6 M7 Homogeneity 62.3 Inverse Difference Moment 61.6 M9 Correlation 62.4 Proposed wavelet features with DB2 and energy measure Name Level Feature W1 2 Vertical detail 63.9 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 63.4 W6 3 Diagonal detail 62.6 W8 4 Vertical detail 62.4 W6 3 Diagonal detail 64.7 W6 3 Diagonal detail 62.4 W6 3 Diagonal detail 62.4 W7 4 Horizontal detail 62.6 W8 4 Vertical detail 62.6 W9 4 Diagonal detail 62.7 W10 5 Horizontal detail 62.7		M3	Entrop	y	64.3
M5 Cluster Shade 59.3 M6 Cluster Prominence 58.6 M7 Homogeneity 62.3 M8 Inverse Difference Moment 61.6 M9 Correlation 62.4 Proposed wavelet features Wame Level Feature with DB2 and energy measure W1 2 Horizontal detail 64.7 W2 2 Vertical detail 63.9 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 62.4 W4 3 Horizontal detail 62.4 W5 3 Vertical detail 63.9 W3 2 Diagonal detail 64.3 W5 3 Vertical detail 62.4 W6 3 Diagonal detail 62.4 W6 3 Diagonal detail 62.6 W8 4 Vertical detail 61.4 W9 4 Diagonal detail 62.7 W12 5 Diagonal detail 74.6 W13 5		M4	Contra	st	64.1
M6 M7 Homogeneity Cluster Prominence Homogeneity 58.6 62.3 63.6 62.3 63.6 62.3 63.6 62.3 63.6 62.3 63.6 62.4 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.6 62.4 63.4 64.7 62.4 62.4 63.4 63.4 62.4 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.6		M5	Cluster	Shade	59.3
M7 M8 M9 W9 with DB2 and energy measure M7 M9 W1 W1 W1 W2 W1 W1 W1 W1 W1 W1 W1 W1 W1 W1 W1 W1 W1		M6	Cluster Prominence		58.6
M8 Inverse Différence Moment Correlation 61.6 62.4 Proposed wavelet features with DB2 and energy measure Name Level Feature 64.7 W1 2 Horizontal detail 63.9 W2 2 Vertical detail 63.3 W4 3 Horizontal detail 62.4 W6 3 Diagonal detail 62.4 W7 4 Horizontal detail 62.6 W8 4 Vertical detail 62.6 W8 4 Vertical detail 62.4 W9 4 Diagonal detail 62.4 W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		M7	Homos	eneity	62.3
M9 Correlation 62.4 Proposed wavelet features with DB2 and energy measure Name Level Feature 64.7 W1 2 Horizontal detail 63.9 63.9 63.9 W2 2 Vertical detail 63.3 64.3 W4 3 Horizontal detail 62.4 W6 3 Diagonal detail 62.4 W6 3 Vertical detail 63.3 W5 3 Vertical detail 62.4 W6 3 Diagonal detail 62.4 W7 4 Horizontal detail 62.6 W8 4 Vertical detail 61.4 W9 4 Diagonal detail 74.9 W10 5 Horizontal detail 63.7 W11 5 Vertical detail 63.7 W13 5 Approximation 75.3		M8	Inverse Difference Moment Correlation		61.6
Proposed wavelet features with DB2 and energy measure Name Level Feature W1 2 Horizontal detail 64.7 W2 2 Vertical detail 63.9 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 63.9 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 62.4 W6 3 Diagonal detail 69.6 W7 4 Horizontal detail 61.4 W9 4 Diagonal detail 61.4 W9 4 Diagonal detail 62.7 W10 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		M9			62.4
with DB2 and energy measure W1 2 Horizontal detail 64.7 W2 2 Vertical detail 63.3 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 63.3 W5 3 Vertical detail 62.4 W6 3 Diagonal detail 62.4 W7 4 Horizontal detail 62.6 W8 4 Vertical detail 61.4 W9 4 Diagonal detail 62.7 W10 5 Horizontal detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3	Proposed wavelet features	Name	Level	Feature	
W2 2 Vertical detail 63.9 W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 64.3 W4 3 Horizontal detail 63.3 W5 3 Vertical detail 62.4 W6 3 Diagonal detail 69.6 W7 4 Horizontal detail 62.6 W8 4 Vertical detail 61.4 W9 4 Diagonal detail 74.9 W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3	with DB2 and energy measure	W1	2	Horizontal detail	64.7
W3 2 Diagonal detail 64.3 W4 3 Horizontal detail 63.3 W5 3 Vertical detail 62.4 W6 3 Diagonal detail 69.6 W7 4 Horizontal detail 61.4 W9 4 Diagonal detail 61.4 W9 4 Diagonal detail 62.7 W10 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3	-	W2	2	Vertical detail	63.9
W4 3 Horizontal detail 63.3 W5 3 Vertical detail 62.4 W6 3 Diagonal detail 69.6 W7 4 Horizontal detail 62.4 W9 4 Vertical detail 61.4 W9 4 Vertical detail 61.4 W9 4 Diagonal detail 74.9 W10 5 Horizontal detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W3	2	Diagonal detail	64.3
W5 3 Vertical detail 62.4 W6 3 Diagonal detail 69.6 W7 4 Horizontal detail 62.6 W8 4 Vertical detail 61.4 W9 4 Diagonal detail 74.9 W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W4	3	Horizontal detail	63.3
W6 3 Diagonal detail 69.6 W7 4 Horizontal detail 62.6 W8 4 Vertical detail 62.6 W9 4 Diagonal detail 62.6 W9 4 Diagonal detail 62.6 W9 4 Diagonal detail 62.7 W10 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W5	3	Vertical detail	62.4
W7 4 Horizontal detail 62.6 W8 4 Vertical detail 61.4 W9 4 Diagonal detail 74.9 W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W6	3	Diagonal detail	69.6
W8 W9 4 4 Vertical detail Diagonal detail 61.4 74.9 W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W7	4	Horizontal detail	62.6
W9 4 Diagonal detail 74.9 W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W8	4	Vertical detail	61.4
W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W9	4	Diagonal detail	74.9
W10 5 Horizontal detail 63.4 W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3					
W11 5 Vertical detail 62.7 W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W10	5	Horizontal detail	63.4
W12 5 Diagonal detail 74.6 W13 5 Approximation 75.3		W11	5	Vertical detail	62.7
W12 5 Diagonal detail 74.0 W13 5 Approximation 75.3		11110	1	Vention detail	74.6
W13 5 Approximation 75.3		W12	2	Diagonal detail	/4.0
		W13	5	Approximation	75.3

V. CONCLUSION

Weeds are undesirable plants growing within a crop and they compete for resources such as nutrients, water and light. Without weed control, crop yields is highly affected asweeds can also cause problems such as harbouring pests and causing pathogen migration, interfering with harvest operations, and increasing costs of cleaning and drying the crop produce. As recent researches have established that weeds are distributed non-uniformly across the fields, weed control based on conventional practice of spread or lined applications of herbicide is therefore undesirable, in

implement site-specific weed management, information on been proposed.

REFERENCES

- [1] Slaughter DC, Giles DK, Downey D, "Autonomous robotic weed control systems: A review". Computers and Electronics in Agriculture 61(1) 2008, 63-78.
- [2] Weide, R Y V D, Bleeker P O, Achten V T J M, Lotz L A P, Fogelberg F, and Melander B, "Innovation in mechanical weed control in crop rows". Weed Research 48 (3) 2008 215-224.
- Bakker T, "An autonomous robot for weed control design", [3] navigation and control. PhD Thesis, Wageningen University, Department of Agricultural Engineering, 2009.
- [4] Franz, E, Gebhardt M R, and Unklesbay K B, "Shape description of completely visible and partially occluded leaves for identifying plants in digital images", Trans ASAE 34(2) 1991, 673-681.
- [5] Woebbecke D M, Meyer G E, Von Bargen K, and Mortensen D A, "Shape features for identifying young weeds using image analysis". Trans Am. Soc. Agric. Eng 38(1) 1995 271-281.
- Meyer G E, Hindman T W, & Lakshmi K, "Machine vision [6] detection parameters for plant species identification". Bellingham, WA SPIE (1998).
- Tang L, Tian L F, Steward B L and Reid J F, "Texture-based weed [7] classification using gabor wavelets and neural network for real-time selective herbicide applications". ASAE 1999
- Burks T F, Shearer S A, and Payne F A, "Classification of weed [8] species using colour texture features and discriminant analysis". Trans ASAE 43(2) 2000 441-448.
- Cho S I, Lee D S, Jeong J Y, "Weed-plant discrimination by [9] machine vision and artificial neural network", Biosyst Eng 83(3) .(2002) 275-280.
- [10] Vrindts E, De Baerdemeaeker J, and Ramon H , "Weed detection using canopy reflection". Precision Agriculture 3(1) 2002, 63-80.
- [11] Meyer G E, Neto J C, "Verification of colour vegetation indices for automated crop imaging applications". Computers and Electronics in Agriculture, 63 (2008) 282-293.
- [12] Guerrero JM, Pajares G, Montalvo M, Romeo J, Guijarro M, "Support vector machines for crop/weeds identification in maize fields", Expert Systems with Applications 39 (12), (2012) 11149-11155.
- [13] Rainville F M, Durand A, Fortin F A, Tanguy K, Maldague X, Panneton B, Simard M J, Bayesian "classification and unsupervised learning for isolating weeds in row crops", Pattern Analysis and Applications, 17, (2), 2014 401-414.
- [14] Perez A J, Lopez F, Benlloch J V, & Christensen S, "Colour and shape analysis techniques for weed detection in cereal fields", Computers and Electronics in Agriculture 25 2000, 197-212.
- [15] Kataoka T, Kaneko T, Okamoto H, &Hata S, "Crop growth estimation system using machine vision". In The 2003 IEEE/ASME international conference on advanced intelligent mechatronics, (2003)
- [16] Hague T, Tillet N, & Wheeler H, "Automated crop and weed monitoring in widely spaced cereals". Precision Agriculture, 1(1), (2006) 95-113.
- [17] Romeo J, Pajares G, Montalvo M, Guerrero JM, Guijarro M, "A new Expert System for greenness identification in agricultural images", Expert Systems with Applications 40 (6), 2013, 2275-2286
- [18] Kourosh JK & Hamid SZ, "Rotation-Invariant Multiresolution Texture Analysis Using Radon and Wavelet Transforms", IEEE Trans. on image processing, 14 (6) 2005 783-795.
- [19] Tang L, Tian L., and Steward B L, "Classification of broadleaf and grass weeds using gabor wavelets and an artificial neural network". Transactions of the ASAE 46(4) 2003, 1247-1254.

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

- [20] Zafar N, Rehma S U, Gillani S, Asghar S, "Segmentation of Crops and Weeds Using Supervised Learning Technique in Improving Knowledge Discovery through the Integration of Data Mining Techniques" edited by Muhammad Usman, IGI-Global, 2015, 308-333.
- [21] RY Van Der Weide, P O Bleeker, V T J M Achten_, L A P Lotz_, F Fogelberg_ & B Melander "Innovation in mechanical weed control in crop rows" The Authors Journal Compilation _ 2008 European Weed Research Society Weed Research, 26 July 2007.
- [22] Burks, T. F. 1997. "Color image texture analysis and neural network classification of weed species", Ph.D. Thesis. Lexington Ky. University of Kentucky, Biological and Agricultural Engineering.
- [23] M. Guijarro3*, G. Pajaresb, I. Riomorosc, P.J. Herrerad, X.P. Burgos-Artizzue, A. Ribeiroe," Automatic segmentation of relevant textures in agricultural images", Computers and Electronics in Agriculture, 2010 Elsevier.
- [24] L. Tang, L.F. Tian, B.L. Steward and J.F. Reid, "Texture-Based Weed Classification Using Gabor Wavelets and Neural Network for Real-time Selective Herbicide Applications".

BIOGRAPHY

Mohana Preethi J received a BE degree in Computer Science and Engineering from Info institute of Engineering in 2015. She currently purses ME in the Department of Computer Science and Engineering at Sri Krishna College of Engineering and Technology, Coimbatore, India. Her research interests

include image processing.